Friday, 21 July 2017

Previsão Ponderada Móvel Média


Modelos de média móvel e de suavização exponencial Como um primeiro passo para ir além dos modelos de média, modelos de caminhada aleatória e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é estacionária localmente com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, usá-lo como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio eo modelo randômico-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é chamada frequentemente uma versão quotsmoothedquot da série original porque a média de curto prazo tem o efeito de alisar para fora os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série de tempo Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar aquém do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: é a quantidade de tempo que as previsões tenderão a ficar atrás de pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais baixos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar encaixá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo escolhe grande parte do quotnoisequot na Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se preferirmos tentar uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: a média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é 3 ((51) 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões a partir do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e então construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obteremos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de viragem por cerca de 10 períodos. A quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações de forma igual e ignora completamente todas as observações anteriores. (Voltar ao início da página.) Browns Simple Exponential Smoothing (média ponderada exponencialmente ponderada) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso do que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em um Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1 945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Uma outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3.4 períodos, que é semelhante ao de uma média móvel simples de 6-termo. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA e no modelo randômico sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoável, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto quotmore previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Assim a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outra informação independente sobre as perspectivas de crescimento a longo prazo . (Voltar ao início da página.) Browns Linear (ie duplo) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos), e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais do que um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo linear de suavização exponencial (LES) que calcula as estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos do tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida aplicando-se a suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dado por: Isto resulta em e 1 0 (isto é, enganar um pouco, e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula as estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não podem variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de suavização de tendência 946 é análoga à da constante de suavização de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é utilizada na estimativa do nível local da série, a idade média dos dados que são utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a . Neste caso, isto é 10.006 125. Isto não é um número muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100, portanto Este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto ser estimar uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de alisamento constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo a média da tendência ao longo dos últimos 20 períodos. Here8217s o que o lote de previsão parece se definimos 946 0,1, mantendo 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Suavização exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Suavização exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se queremos ser agnósticos quanto à existência de uma tendência local, então um dos modelos do SES pode ser mais fácil de explicar e também dar mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar de sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos à frente que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 fica maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao início da página.) 3 Noções básicas sobre os níveis e métodos de previsão Você pode gerar previsões de detalhe (item único) e previsões de resumo (linha de produtos) que refletem os padrões de demanda do produto. O sistema analisa as vendas anteriores para calcular as previsões usando 12 métodos de previsão. As previsões incluem informações detalhadas no nível do item e informações de nível superior sobre uma filial ou a empresa como um todo. 3.1 Critérios de Avaliação do Desempenho da Previsão Dependendo da seleção das opções de processamento e das tendências e padrões nos dados de vendas, alguns métodos de previsão apresentam melhor desempenho do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Você pode achar que um método de previsão que fornece bons resultados em uma fase de um ciclo de vida do produto permanece apropriado ao longo de todo o ciclo de vida. Você pode selecionar entre dois métodos para avaliar o desempenho atual dos métodos de previsão: Porcentagem de precisão (POA). Desvio absoluto médio (MAD). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos para um período que você especificar. Esse período é chamado de período de retenção ou período de melhor ajuste. Os dados nesse período são usados ​​como base para recomendar qual método de previsão usar na realização da projeção de projeção seguinte. Esta recomendação é específica para cada produto e pode mudar de uma geração de projeção para a próxima. 3.1.1 Melhor Ajuste O sistema recomenda a melhor previsão de ajuste aplicando os métodos de previsão selecionados ao histórico de pedidos de vendas anteriores e comparando a simulação de previsão com o histórico real. Quando você gera uma previsão de ajuste melhor, o sistema compara históricos de pedidos de vendas reais com previsões para um período de tempo específico e calcula como exatamente cada método de previsão diferente previu vendas. Em seguida, o sistema recomenda a previsão mais precisa como o melhor ajuste. Este gráfico ilustra as melhores previsões de ajuste: Figura 3-1 Previsão de melhor ajuste O sistema usa esta seqüência de passos para determinar o melhor ajuste: Use cada método especificado para simular uma previsão para o período de retenção. Compare as vendas reais com as previsões simuladas para o período de retenção. Calcule o POA ou o MAD para determinar qual método de previsão mais se aproxima das vendas reais passadas. O sistema usa POA ou MAD, com base nas opções de processamento selecionadas. Recomenda uma melhor previsão de ajuste pelo POA que é mais próximo de 100 por cento (mais ou menos) ou o MAD que está mais próximo de zero. 3.2 Métodos de previsão O JD Edwards EnterpriseOne Forecast Management usa 12 métodos para previsão quantitativa e indica qual método fornece o melhor ajuste para a situação de previsão. Esta seção discute: Método 1: Percentagem em relação ao ano passado. Método 2: Percentagem calculada sobre o ano passado. Método 3: Ano passado para este ano. Método 4: Média móvel. Método 5: Aproximação linear. Método 6: Regressão de mínimos quadrados. Método 7: Aproximação do Segundo Grau. Método 8: Método Flexível. Método 9: Média Móvel Ponderada. Método 10: Suavização linear. Método 11: Suavização Exponencial. Método 12: suavização exponencial com tendência e sazonalidade. Especifique o método que você deseja usar nas opções de processamento do programa Forecast Generation (R34650). A maioria desses métodos fornece controle limitado. Por exemplo, o peso colocado em dados históricos recentes ou o intervalo de datas de dados históricos que é usado nos cálculos pode ser especificado por você. Os exemplos no guia indicam o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos de métodos no guia usam parte ou todos esses conjuntos de dados, que são dados históricos dos últimos dois anos. A projeção de previsão vai para o próximo ano. Os dados do histórico de vendas são estáveis, com pequenos aumentos sazonais em julho e dezembro. Esse padrão é característico de um produto maduro que pode estar se aproximando de obsolescência. 3.2.1 Método 1: Percentagem em relação ao ano passado Este método utiliza a fórmula Percentagem em relação ao ano passado para multiplicar cada período de previsão pelo aumento ou diminuição percentual especificado. Para prever a demanda, este método requer o número de períodos para o melhor ajuste mais um ano de histórico de vendas. Este método é útil para prever a demanda por itens sazonais com crescimento ou declínio. 3.2.1.1 Exemplo: Método 1: Percentagem em relação ao ano passado A fórmula percentual em relação ao ano passado multiplica os dados de vendas do ano anterior por um fator especificado e, em seguida, projeta os resultados ao longo do ano seguinte. Este método pode ser útil na orçamentação para simular o efeito de uma taxa de crescimento especificada ou quando o histórico de vendas tem uma componente sazonal significativa. Especificações de previsão: Fator de multiplicação. Por exemplo, especifique 110 na opção de processamento para aumentar os dados do histórico de vendas dos anos anteriores em 10%. Histórico de vendas necessário: Um ano para calcular a previsão, mais o número de períodos necessários para avaliar o desempenho da previsão (períodos de melhor ajuste) que você especifica. Esta tabela é a história utilizada no cálculo da previsão: previsão de fevereiro é igual a 117 vezes 1,1 128,7 arredondado para 129. Previsão de março é igual a 115 vezes 1,1 126,5 arredondado para 127. 3.2.2 Método 2: Percentual calculado sobre o ano passado Este método usa a porcentagem calculada mais Fórmula do ano passado para comparar as vendas passadas de períodos especificados às vendas dos mesmos períodos do ano anterior. O sistema determina uma porcentagem de aumento ou diminuição e, em seguida, multiplica cada período pela porcentagem para determinar a previsão. Para prever a demanda, esse método requer o número de períodos do histórico de pedidos de vendas mais um ano de histórico de vendas. Este método é útil para prever a demanda de curto prazo para itens sazonais com crescimento ou declínio. 3.2.2.1 Exemplo: Método 2: Porcentagem calculada sobre o ano passado A fórmula calculada sobre o ano passado multiplica os dados de vendas do ano anterior por um fator que é calculado pelo sistema e, em seguida, projeta esse resultado para o próximo ano. Este método pode ser útil para projetar o efeito de estender a taxa de crescimento recente de um produto para o próximo ano, preservando um padrão sazonal que está presente no histórico de vendas. Especificações de previsão: Faixa de história de vendas para usar no cálculo da taxa de crescimento. Por exemplo, especifique n igual a 4 na opção de processamento para comparar o histórico de vendas dos últimos quatro períodos com esses mesmos quatro períodos do ano anterior. Use a razão calculada para fazer a projeção para o próximo ano. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão, dado n 4: previsão de fevereiro é igual a 117 vezes 0,9766 114,26 arredondado para 114. Previsão de março é igual a 115 vezes 0,9766 112,31 arredondado para 112. 3.2.3 Método 3: Ano passado para este ano Este método usa Vendas nos últimos anos para os próximos anos. Para prever a demanda, este método requer o número de períodos mais adequados mais um ano do histórico de pedidos de vendas. Este método é útil para prever a demanda por produtos maduros com demanda de nível ou demanda sazonal sem uma tendência. 3.2.3.1 Exemplo: Método 3: Ano passado a este ano A fórmula do ano passado para este ano copia os dados de vendas do ano anterior para o ano seguinte. Este método pode ser útil no orçamento para simular vendas no nível atual. O produto é maduro e não tem tendência a longo prazo, mas pode existir um padrão de demanda sazonal significativo. Especificações de previsão: Nenhuma. Histórico de vendas necessário: Um ano para calcular a previsão mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história usada no cálculo da previsão: Previsão de janeiro é igual a janeiro do ano passado com um valor de previsão de 128. Previsão de fevereiro é igual a fevereiro do ano passado com um valor de previsão de 117. Previsão de março é igual a março do ano passado com um valor de previsão de 115. 3.2.4 Método 4: Média móvel Este método usa a fórmula Média Móvel para a média do número especificado de períodos para projetar o próximo período. Você deve recalcular-lo muitas vezes (mensal, ou pelo menos trimestral) para refletir o nível de demanda em mudança. Para prever a demanda, este método requer o número de períodos melhor ajustados mais o número de períodos do histórico de pedidos de vendas. Este método é útil para prever a demanda por produtos maduros sem uma tendência. 3.2.4.1 Exemplo: Método 4: Moving Average Moving Average (MA) é um método popular para a média dos resultados do histórico de vendas recente para determinar uma projeção para o curto prazo. O método de previsão MA está atrás das tendências. O viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendências fortes ou padrões sazonais. Este método funciona melhor para previsões de curto prazo de produtos maduros do que para produtos que estão em estágios de crescimento ou obsolescência do ciclo de vida. Especificações de previsão: n é igual ao número de períodos do histórico de vendas a ser usado no cálculo da previsão. Por exemplo, especifique n 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas é lento para reconhecer mudanças no nível de vendas. Inversamente, um pequeno valor para n (como 3) é mais rápido para responder a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. Histórico de vendas necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de fevereiro é igual a (114 119 137 125) 4 123.75 arredondado para 124. Previsão de março é igual a (119 137 125 124) 4 126,25 arredondado para 126. 3.2.5 Método 5: Aproximação linear Este método Usa a fórmula de Aproximação Linear para calcular uma tendência a partir do número de períodos do histórico de pedidos de vendas e projetar essa tendência para a previsão. Você deve recalcular a tendência mensalmente para detectar alterações nas tendências. Esse método requer o número de períodos de melhor ajuste mais o número de períodos especificados do histórico de pedidos de vendas. Este método é útil para prever a procura de novos produtos, ou produtos com tendências positivas ou negativas consistentes que não são devidas a flutuações sazonais. 3.2.5.1 Exemplo: Método 5: Aproximação linear A aproximação linear calcula uma tendência que se baseia em dois pontos de dados do histórico de vendas. Esses dois pontos definem uma linha de tendência reta projetada para o futuro. Use este método com cautela porque as previsões de longo alcance são alavancadas por pequenas alterações em apenas dois pontos de dados. Especificações de previsão: n é igual ao ponto de dados no histórico de vendas comparado ao ponto de dados mais recente para identificar uma tendência. Por exemplo, especifique n 4 para usar a diferença entre dezembro (dados mais recentes) e agosto (quatro períodos antes de dezembro) como base para o cálculo da tendência. Histórico de vendas mínimo necessário: n mais 1 mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de janeiro de dezembro do ano passado 1 (Tendência) que é igual a 137 (1 vez 2) 139. Previsão de fevereiro de dezembro do ano passado 1 (Tendência), que é igual a 137 (2 vezes 2) 141. Previsão de março de dezembro do ano passado 1 (Tendência) que é igual a 137 (3 vezes 2) 143. 3.2.6 Método 6: Regressão de mínimos quadrados O método de regressão de mínimos quadrados (LSR) deriva uma equação descrevendo uma relação de linha reta entre os dados históricos de vendas E a passagem do tempo. LSR ajusta uma linha para o intervalo selecionado de dados de modo que a soma dos quadrados das diferenças entre os pontos de dados de vendas reais ea linha de regressão são minimizados. A previsão é uma projeção dessa linha reta para o futuro. Esse método requer o histórico de dados de vendas para o período que é representado pelo número de períodos melhor ajustados mais o número especificado de períodos de dados históricos. O requisito mínimo é dois pontos de dados históricos. Este método é útil para prever a demanda quando uma tendência linear está nos dados. 3.2.6.1 Exemplo: Método 6: regressão linear de regressão de mínimos quadrados ou regressão de mínimos quadrados (LSR), é o método mais popular para identificar uma tendência linear nos dados históricos de vendas. O método calcula os valores de aeb que devem ser usados ​​na fórmula: Esta equação descreve uma reta, onde Y representa vendas e X representa tempo. Regressão linear é lenta para reconhecer pontos de viragem e mudar a função de passo na demanda. Regressão linear encaixa uma linha reta para os dados, mesmo quando os dados são sazonais ou melhor descrito por uma curva. Quando os dados do histórico de vendas seguem uma curva ou têm um forte padrão sazonal, ocorrem erros de previsão e sistemáticos. Especificações de previsão: n é igual aos períodos do histórico de vendas que serão usados ​​no cálculo dos valores de aeb. Por exemplo, especifique n 4 para usar o histórico de setembro a dezembro como base para os cálculos. Quando os dados estiverem disponíveis, um n maior (como n 24) normalmente seria usado. LSR define uma linha para apenas dois pontos de dados. Para este exemplo, um pequeno valor para n (n 4) foi escolhido para reduzir os cálculos manuais que são necessários para verificar os resultados. Histórico de vendas mínimo necessário: n períodos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de março é igual a 119,5 (7 vezes 2,3) 135,6 arredondado para 136. 3.2.7 Método 7: Aproximação de segundo grau Para projetar a previsão, este método usa a fórmula de Aproximação de Segundo Grau para traçar uma curva Que se baseia no número de períodos do histórico de vendas. Este método requer o número de períodos melhor ajuste mais o número de períodos do histórico de pedidos de vendas vezes três. Esse método não é útil para prever a demanda por um período de longo prazo. 3.2.7.1 Exemplo 7: Aproximação do Segundo Grau A Regressão Linear determina os valores para aeb na fórmula de previsão Y a b X com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. A aproximação de segundo grau é similar, mas este método determina valores para a, b e c na fórmula de previsão: Y a b X c X 2 O objetivo deste método é ajustar uma curva aos dados do histórico de vendas. Este método é útil quando um produto está na transição entre os estágios do ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estádios de crescimento, a tendência de vendas pode acelerar. Devido ao termo de segunda ordem, a previsão pode aproximar-se rapidamente do infinito ou cair para zero (dependendo se o coeficiente c é positivo ou negativo). Este método é útil apenas no curto prazo. Especificações de previsão: a fórmula encontre a, b e c para ajustar uma curva exatamente a três pontos. Você especifica n, o número de períodos de tempo de dados a serem acumulados em cada um dos três pontos. Neste exemplo, n 3. Os dados reais de vendas de abril a junho são combinados no primeiro ponto, Q1. Julho a setembro são adicionados em conjunto para criar Q2, e de outubro a dezembro somam para Q3. A curva é ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas necessário: 3 vezes n períodos para o cálculo da previsão mais o número de períodos necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Q0 (Jan) (Fev) (Mar) Q1 (Abr) (Maio) (Jun), que é igual a 125 129 137 384 Q2 (Jul) (Agosto) 131 400 Q3 (Oct) (Nov) (Dec) que é igual a 114 119 137 370 O próximo passo envolve o cálculo dos três coeficientes a, b e c a serem utilizados na fórmula de previsão Y ab X c X 2. Q1, Q2 e Q3 são apresentados no gráfico, onde o tempo é plotado no eixo horizontal. Q1 representa o total de vendas históricas para abril, maio e junho e é plotada em X 1 Q2 corresponde a julho a setembro Q3 corresponde a outubro a dezembro e Q4 representa janeiro a março. Este gráfico ilustra o traçado de Q1, Q2, Q3 e Q4 para a aproximação de segundo grau: Figura 3-2 Plotando Q1, Q2, Q3 e Q4 para aproximação de segundo grau Três equações descrevem os três pontos no gráfico: (1) Q1 A bX cX 2 em que X 1 (Q1 abc) (2) Q2 a bX cX 2 onde X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 onde X 3 (Q3 a 3b 9c) Resolva as três equações simultaneamente Para encontrar b, ae c: Subtrair a equação 1 (1) da equação 2 (2) e resolver para b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substituir esta equação para B na equação (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Finalmente, substitua essas equações por aeb pela equação (1): (1) Q3 ndash O método de Aproximação de Segundo Grau calcula a, b e c da seguinte forma: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda (384 ndash 400) 2 ndash23 Este é um cálculo de aproximação de segundo grau aproximado: Y a bX cX (ndash de Q3) 2 322 85X (ndash23) (X2) Quando X4, Q4 322 340 ndash 368 294. A previsão é igual a 294 3 98 por período. Quando X5, Q5 322 425 ndash 575 172. A previsão é igual a 172 3 58,33 arredondada para 57 por período. Quando X 6, Q 6 322 510 ndash 828 4. A previsão é igual a 4 3 1,33 arredondado para 1 por período. Esta é a previsão para o ano que vem, no ano passado até este ano: 3.2.8 Método 8: método flexível Este método permite-lhe seleccionar o número de períodos de ordem de vendas que começa n meses antes da data de início prevista e Aplicar um aumento percentual ou diminuir o fator de multiplicação com o qual modificar a previsão. Esse método é semelhante ao método 1, porcentagem sobre o ano passado, exceto que você pode especificar o número de períodos que você usar como a base. Dependendo do que você selecionar como n, esse método requer períodos melhor ajuste mais o número de períodos de dados de vendas que é indicado. Esse método é útil para prever a demanda por uma tendência planejada. 3.2.8.1 Exemplo: Método 8: Método Flexível O Método Flexível (Percentagem ao longo de n Meses Anterior) é semelhante ao Método 1, Percentual em relação ao Ano Passado. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado por você e projetam esse resultado para o futuro. No método Percent Over Last Year, a projeção é baseada em dados do mesmo período do ano anterior. Você também pode usar o Método Flexível para especificar um período de tempo, diferente do mesmo período no último ano, para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 110 na opção de processamento para aumentar os dados do histórico de vendas anteriores em 10%. Período de base. Por exemplo, n 4 faz com que a primeira previsão se baseie em dados de vendas em setembro do ano passado. Histórico de vendas mínimo exigido: o número de períodos de volta ao período base mais o número de períodos necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: 3.2.9 Método 9: Média Móvel Ponderada A fórmula Média Móvel Ponderada é semelhante ao Método 4, fórmula Média Móvel, porque projeta o histórico de vendas dos meses anteriores para projetar o histórico de vendas dos próximos meses. No entanto, com esta fórmula você pode atribuir pesos para cada um dos períodos anteriores. Este método requer o número de períodos ponderados selecionados mais o número de períodos melhores dados de ajuste. Semelhante à média móvel, esse método fica atrás das tendências da demanda, portanto este método não é recomendado para produtos com tendências fortes ou sazonalidade. Este método é útil para prever a demanda por produtos maduros com demanda que é relativamente nível. 3.2.9.1 Exemplo: Método 9: Média Móvel Ponderada O método Média Móvel Ponderada (WMA) é semelhante ao Método 4, Média Móvel (MA). No entanto, você pode atribuir ponderações desiguais aos dados históricos ao usar WMA. O método calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Dados mais recentes geralmente é atribuído um peso maior do que os dados mais antigos, de modo WMA é mais sensível às mudanças no nível de vendas. No entanto, o viés de previsão e erros sistemáticos ocorrem quando o histórico de vendas do produto exibe fortes tendências ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. O número de períodos do histórico de vendas (n) a ser usado no cálculo da previsão. Por exemplo, especifique n 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Tal valor resulta em uma previsão estável, mas é lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responde mais rapidamente a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O número total de períodos para a opção de processamento rdquo14 - períodos para includerdquo não deve exceder 12 meses. O peso que é atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar 1,00. Por exemplo, quando n 4, atribua pesos de 0,50, 0,25, 0,15 e 0,10 com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é a história utilizada no cálculo da previsão: Previsão de Janeiro é igual a (128 vezes 0.10) (119 vezes 0,25) (137 vezes 0.50) (0,10 0,15 0,25 0,50) 128,45 arredondado para 128. Previsão de fevereiro é igual a (114 vezes 0,10) (128 vezes 0,15) (128 vezes 0,15) (128 vezes 0.50) 1 128,5 arredondado para 128. Previsão de março é igual a (119 vezes 0,15) 128. 3.2.10 Método 10: Suavização linear Este método calcula uma média ponderada dos dados de vendas anteriores. No cálculo, esse método usa o número de períodos do histórico de pedidos de vendas (de 1 a 12) que é indicado na opção de processamento. O sistema utiliza uma progressão matemática para pesar os dados na faixa do primeiro (menor peso) ao final (maior peso). Em seguida, o sistema projeta essas informações para cada período da previsão. Esse método requer o melhor ajuste de meses mais o histórico de pedidos de vendas para o número de períodos que são especificados na opção de processamento. 3.2.10.1 Exemplo: Método 10: Suavização linear Este método é semelhante ao Método 9, WMA. No entanto, em vez de atribuir arbitrariamente ponderações aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam a 1,00. O método calcula então uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como todas as técnicas lineares de média móvel de previsão, o viés de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe tendências fortes ou padrões sazonais. Esse método funciona melhor para as projeções de curto prazo de produtos maduros do que para produtos em estágios de crescimento ou obsolescência do ciclo de vida. N é igual ao número de períodos do histórico de vendas a ser usado no cálculo da previsão. Por exemplo, especifique n igual a 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção para o próximo período de tempo. O sistema atribui automaticamente os pesos aos dados históricos que diminuem linearmente e somam a 1,00. Por exemplo, quando n é igual a 4, o sistema atribui pesos de 0,4, 0,3, 0,2 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é o histórico utilizado no cálculo da previsão: 3.2.11 Método 11: Suavização exponencial Este método calcula uma média suavizada, que se torna uma estimativa que representa o nível geral de vendas durante os períodos de dados históricos selecionados. Esse método requer o histórico de dados de vendas para o período de tempo que é representado pelo número de períodos melhor ajustados mais o número de períodos de dados históricos especificados. O requisito mínimo é dois períodos de dados históricos. Esse método é útil para prever a demanda quando não há tendência linear nos dados. 3.2.11.1 Exemplo: Método 11: Suavização exponencial Este método é semelhante ao Método 10, Linear Smoothing. No Linear Smoothing, o sistema atribui pesos que diminuem linearmente para os dados históricos. Em Suavização Exponencial, o sistema atribui pesos que decrescem exponencialmente. A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. Alfa é o peso que é aplicado às vendas reais para o período anterior. (1 ndash alfa) é o peso que é aplicado à previsão para o período anterior. Os valores para alfa variam de 0 a 1 e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00 (alfa (1 ndash alfa) 1). Você deve atribuir um valor para a constante de suavização, alfa. Se você não atribuir um valor para a constante de suavização, o sistema calculará um valor assumido baseado no número de períodos do histórico de vendas especificado na opção de processamento. Alfa é igual à constante de suavização que é usada para calcular a média suavizada para o nível geral ou magnitude das vendas. Os valores para alfa variam de 0 a 1. n é igual ao intervalo de dados do histórico de vendas a ser incluído nos cálculos. Geralmente, um ano de dados do histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, um pequeno valor para n (n 4) foi escolhido para reduzir os cálculos manuais que são necessários para verificar os resultados. A Suavização Exponencial pode gerar uma previsão baseada em apenas um ponto de dados históricos. Histórico de vendas mínimo necessário: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). 3.2.12 Método 12: Suavização exponencial com tendência e sazonalidade Este método calcula uma tendência, um índice sazonal e uma média exponencialmente suavizada a partir do histórico de pedidos de vendas. O sistema então aplica uma projeção da tendência para a previsão e ajusta para o índice sazonal. Esse método requer o número de períodos melhor ajustados mais dois anos de dados de vendas e é útil para itens que têm tendência e sazonalidade na previsão. Você pode inserir o fator alfa e beta ou fazer com que o sistema os calcule. Os fatores alfa e beta são a constante de suavização que o sistema utiliza para calcular a média suavizada para o nível geral ou magnitude das vendas (alfa) ea componente de tendência da previsão (beta). 3.2.12.1 Exemplo: Método 12: Suavização exponencial com tendência e estacionalidade Este método é semelhante ao Método 11, Suavização Exponencial, na medida em que é calculada uma média suavizada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta de uma média suavizada que é ajustada para uma tendência linear. Quando especificada na opção de processamento, a previsão também é ajustada pela sazonalidade. Alpha é igual à constante de suavização que é usada no cálculo da média suavizada para o nível geral ou magnitude das vendas. Os valores para alfa variam de 0 a 1. Beta é igual à constante de suavização que é usada no cálculo da média suavizada para a componente de tendência da previsão. Valores para beta variam de 0 a 1. Se um índice sazonal é aplicado à previsão. Alfa e beta são independentes uns dos outros. Eles não têm que somar a 1,0. Histórico de vendas mínimo exigido: Um ano mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Quando dois ou mais anos de dados históricos estão disponíveis, o sistema usa dois anos de dados nos cálculos. O método 12 usa duas equações Exponential Smoothing e uma média simples para calcular uma média suavizada, uma tendência suavizada e um índice sazonal médio simples. A previsão é então calculada usando os resultados das três equações: L é o comprimento da sazonalidade (L igual a 12 meses ou 52 semanas). T é o período de tempo atual. M é o número de períodos de tempo no futuro da previsão. S é o fator de ajuste sazonal multiplicativo que é indexado ao período de tempo apropriado. Esta tabela lista o histórico usado no cálculo de previsão: Esta seção fornece uma visão geral das Avaliações de Previsão e discute: Você pode selecionar métodos de previsão para gerar até 12 previsões para cada produto. Cada método de previsão pode criar uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, uma decisão subjetiva é impraticável quanto à previsão de uso nos planos para cada produto. O sistema avalia automaticamente o desempenho para cada método de previsão selecionado e para cada produto que você previu. Você pode selecionar entre dois critérios de desempenho: MAD e POA. MAD é uma medida do erro de previsão. POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho requerem dados reais do histórico de vendas para um período especificado por você. O período de história recente utilizado para a avaliação é chamado de período de retenção ou período de melhor ajuste. Para medir o desempenho de um método de previsão, o sistema: Usa as fórmulas de previsão para simular uma previsão para o período de retenção histórico. Faz uma comparação entre os dados de vendas reais ea previsão simulada para o período de retenção. Quando você seleciona vários métodos de previsão, esse mesmo processo ocorre para cada método. São calculadas várias previsões para o período de retenção e comparadas com o histórico de vendas conhecido para esse mesmo período. O método de previsão que produz o melhor ajuste (melhor ajuste) entre a previsão e as vendas reais durante o período de retenção é recomendado para uso nos planos. Esta recomendação é específica para cada produto e pode ser alterada sempre que gerar uma previsão. 3.3.1 Desvio Médio Absoluto O Desvio Absoluto Médio (MAD) é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre os dados reais e os previstos. MAD é uma medida da magnitude média de erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados ​​no cálculo, os erros positivos não cancelam os erros negativos. Ao comparar vários métodos de previsão, aquele com o menor MAD é o mais confiável para esse produto para esse período holdout. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e duas outras medidas comuns de distribuição, que são desvio padrão e Erro quadrático médio. Por exemplo: MAD (Sigma (Actual) ndash (Previsão)) n Desvio padrão, (sigma) cong 1,25 MAD Erro quadrático médio cong ndashsigma2 Este exemplo indica o cálculo de MAD para dois dos métodos de previsão. Este exemplo pressupõe que você especificou na opção de processamento que o período do período de retenção (períodos de melhor ajuste) é igual a cinco períodos. 3.3.1.1 Método 1: Ano Passado a Este Ano Esta tabela é a história utilizada no cálculo de MAD, dados Períodos de Melhor Ajuste 5: Desvio Médio Absoluto é igual a (2 1 20 10 14) 5 9.4. Com base nessas duas escolhas, recomenda-se o método da Média Móvel, n 4, porque ele tem o MAD menor, 9,4, para o período de retenção dado. 3.3.2 Porcentagem de Precisão A Porcentagem de Precisão (POA) é uma medida do viés de previsão. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos de estoque aumentam. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. Nos serviços, a magnitude dos erros de previsão é geralmente mais importante do que o viés previsto. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Definition In the weighted moving average model (forecast strategy 14), every historical value is weighted with a factor from the weighting group in the univariate forecast profile. Fórmula para a Média Móvel Ponderada O modelo de média móvel ponderada permite que você pese dados históricos recentes mais pesadamente do que dados mais antigos ao determinar a média. Você faz isso se os dados mais recentes forem mais representativos da demanda futura do que os dados mais antigos. Portanto, o sistema é capaz de reagir mais rapidamente a uma mudança de nível. A precisão desse modelo depende em grande parte da escolha dos fatores de ponderação. Se o padrão da série de tempo mudar, você também deve adaptar os fatores de ponderação. Ao criar um grupo de ponderação, você insere os fatores de ponderação como porcentagens. The sum of the weighting factors does not have to be 100. No ex-post forecast is calculated with this forecast strategy. Forecasting by Smoothing Techniques This site is a part of the JavaScript E-labs learning objects for decision making. Outros JavaScript nesta série são classificados em diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. As caixas em branco não são incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto nas Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de alisamento igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0,40 é freqüentemente efetivo. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais abrangente é o uso de comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou até perto de ótimos, por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é suportada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias.

No comments:

Post a Comment